Powered by OpenAIRE graph

Melanophilin, a novel aldosterone-induced gene in mouse cortical collecting duct cells

Authors: Jessica Armstrong Martel; Anikó Náray-Fejes-Tóth; Géza Fejes-Tóth; Donna Michael;

Melanophilin, a novel aldosterone-induced gene in mouse cortical collecting duct cells

Abstract

The molecular mechanisms of aldosterone-regulated Na+transport are not entirely clear. The goal of this study was to identify aldosterone-induced genes potentially involved in the trafficking of the epithelial Na+channel (ENaC). We report that the transcript levels of melanophilin (MLPH), a protein involved in vesicular trafficking in melanocytes, are rapidly increased by aldosterone in cortical collecting duct (CCD) cells. This effect was near maximal at physiological aldosterone concentrations, indicating that it is mediated by the mineralocorticoid receptor. De novo protein synthesis is not required for the induction of MLPH mRNA by aldosterone. To determine whether this induction has functional consequences on transepithelial Na+current, we generated clonal CCD cell lines that express a tetracycline-inducible MLPH. Induction of MLPH in these cells led to a relatively modest, but statistically significant, increase in amiloride-sensitive Na+current, suggesting the MLPH may be involved in ENaC trafficking. MyosinVc, the epithelial-specific class V myosin that is highly homologous to MyosinVa, another component of the melanosome trafficking complex, has putative consensus sites for serum and glucocorticoid-induced kinase 1 (SGK1), an early aldosterone-induced kinase that mediates some of aldosterone's effects on Na+transport. Our results indicate that MyosinVc is phosphorylated by endogenous SGK1, suggesting that this complex may be involved in the aldosterone-regulated trafficking of ENaC in the CCD. These results suggest potential mechanisms by which aldosterone may regulate Na+transport both directly, by increasing the abundance of MLPH, and indirectly by increasing the transcription of SGK1, which in turn regulates the activity of MyosinVc.

Related Organizations
Keywords

Mice, Gene Expression Regulation, Animals, RNA, Messenger, Kidney Tubules, Collecting, Carrier Proteins, Aldosterone, Adaptor Proteins, Signal Transducing, Cell Line

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Average
Top 10%