Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cancer Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cancer Research and Clinical Oncology
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

A novel role for DYX1C1, a chaperone protein for both Hsp70 and Hsp90, in breast cancer

Authors: Yuxin, Chen; Muzi, Zhao; Saiqun, Wang; Jie, Chen; Yun, Wang; Qinhong, Cao; Wenbin, Zhou; +4 Authors

A novel role for DYX1C1, a chaperone protein for both Hsp70 and Hsp90, in breast cancer

Abstract

With three consecutive tetratricopeptide repeat (TPR) motifs at its C-terminus essential for neuronal migration, and a p23 domain at its N-terminus, DYX1C1 was the first gene proposed to have a role in developmental dyslexia. In this study, we attempted to identify the potential interaction of DYX1C1 and heat shock protein, and the role of DYX1C1 in breast cancer.GST pull-down, a yeast two-hybrid system, RT-PCR, site-directed mutagenesis approach.Our study initially confirmed DYX1C1, a dyslexia related protein, could interact with Hsp70 and Hsp90 via GST pull-down and a yeast two-hybrid system. And we verified that EEVD, the C-terminal residues of DYX1C1, is responsible for the identified association. Further, DYX1C1 mRNA was significantly overexpressed in malignant breast tumor, linking with the up-regulated expression of Hsp70 and Hsp90.These results suggest that DYX1C1 is a novel Hsp70 and Hsp90-interacting co-chaperone protein and its expression is associated with malignancy.

Related Organizations
Keywords

Reverse Transcriptase Polymerase Chain Reaction, Molecular Sequence Data, Nuclear Proteins, Breast Neoplasms, Nerve Tissue Proteins, Up-Regulation, Cytoskeletal Proteins, Two-Hybrid System Techniques, Mutagenesis, Site-Directed, Humans, Female, HSP70 Heat-Shock Proteins, Amino Acid Sequence, HSP90 Heat-Shock Proteins, RNA, Messenger

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Average
Top 10%