Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 1989 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Yeast translation initiation suppressor sui2 encodes the alpha subunit of eukaryotic initiation factor 2 and shares sequence identity with the human alpha subunit.

Authors: A M, Cigan; E K, Pabich; L, Feng; T F, Donahue;

Yeast translation initiation suppressor sui2 encodes the alpha subunit of eukaryotic initiation factor 2 and shares sequence identity with the human alpha subunit.

Abstract

Genetic reversion of HIS4 initiator codon mutations in yeast has identified three unlinked genes, sui1, sui2, and SUI3 (suppressors of initiator codon mutations), which when mutated confer the ability to initiate translation at HIS4 despite the absence of an AUG start codon. We have previously demonstrated that the SUI3 gene encodes the beta subunit of the eukaryotic initiation factor 2 (eIF-2) and that mutations at a Zn(II) finger motif of SUI3 alter the start site selection process in yeast. In this report, molecular and biochemical characterizations show that the sui2 suppressor gene encodes the alpha subunit of eIF-2. The amino acid sequence of sui2 is 58% homologous to that encoded by the cDNA of the human eIF-2 alpha. Mutations in the sui2 suppressor alleles occur in the amino-terminal portion of the protein and change amino acids that are identical at the same relative position in the yeast and human proteins. Protein sequence analysis shows that a sui2 mutant yeast strain allows initiation at a UUG codon in the absence of an AUG codon at HIS4. These data further suggest that eIF-2 is an important component of the preinitiation complex that mediates ribosomal recognition of a start codon during the scanning process.

Related Organizations
Keywords

Base Sequence, Blotting, Western, Eukaryotic Initiation Factor-2, Genes, Fungal, Molecular Sequence Data, Restriction Mapping, Proteins, Saccharomyces cerevisiae, Molecular Weight, Suppression, Genetic, Peptide Initiation Factors, Amino Acid Sequence, Peptide Chain Initiation, Translational

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    201
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
201
Top 10%
Top 1%
Top 1%
bronze