Promoter-Proximal Introns in Arabidopsis thaliana Are Enriched in Dispersed Signals that Elevate Gene Expression
Promoter-Proximal Introns in Arabidopsis thaliana Are Enriched in Dispersed Signals that Elevate Gene Expression
Abstract Introns that elevate mRNA accumulation have been found in a wide range of eukaryotes. However, not all introns affect gene expression, and direct testing is currently the only way to identify stimulatory introns. Our genome-wide analysis in Arabidopsis thaliana revealed that promoter-proximal introns as a group are compositionally distinct from distal introns and that the degree to which an individual intron matches the promoter-proximal intron profile is a strong predictor of its ability to increase expression. We found that the sequences responsible for elevating expression are dispersed throughout an enhancing intron, as is a candidate motif that is overrepresented in first introns and whose occurrence in tested introns is proportional to its effect on expression. The signals responsible for intron-mediated enhancement are apparently conserved between Arabidopsis and rice (Oryza sativa) despite the large evolutionary distance separating these plants.
- University of California, Davis United States
Gene Expression Regulation, Plant, Arabidopsis, Oryza, Promoter Regions, Genetic, Introns
Gene Expression Regulation, Plant, Arabidopsis, Oryza, Promoter Regions, Genetic, Introns
33 Research products, page 1 of 4
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).160 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
