Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2001 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Analysis of the blind Drosophila mutant ninaB identifies the gene encoding the key enzyme for vitamin A formation in vivo

Authors: J, von Lintig ; A, Dreher; C, Kiefer; M F, Wernet; K, Vogt;

Analysis of the blind Drosophila mutant ninaB identifies the gene encoding the key enzyme for vitamin A formation in vivo

Abstract

Visual pigments (rhodopsins) are composed of a chromophore (vitamin A derivative) bound to a protein moiety embedded in the retinal membranes. Animals cannot synthesize the visual chromophore de novo but rely on the uptake of carotenoids, from which vitamin A is formed enzymatically by oxidative cleavage. Despite its importance, the enzyme catalyzing the key step in vitamin A formation resisted molecular analyses until recently, when the successful cloning of a cDNA encoding an enzyme with β,β-carotene-15,15′-dioxygenase activity from Drosophila was reported. To prove its identity with the key enzyme for vitamin A formation in vivo , we analyzed the blind Drosophila mutant ninaB . In two independent ninaB alleles, we found mutations in the gene encoding the β,β-carotene-15,15′-dioxygenase. These mutations lead to a defect in vitamin A formation and are responsible for blindness of these flies.

Related Organizations
Keywords

Male, Heterozygote, Base Sequence, Molecular Sequence Data, Blindness, Drosophila melanogaster, Amino Acid Substitution, Mutation, Mutagenesis, Site-Directed, Oxygenases, Animals, Drosophila Proteins, Humans, Point Mutation, Female, Amino Acid Sequence, RNA, Messenger, Cloning, Molecular, Chickens, Crosses, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    94
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
94
Top 10%
Top 10%
Top 10%
bronze