Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article . 2006
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 2006 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Current Biology
Article . 2006
versions View all 4 versions

Septate-Junction-Dependent Luminal Deposition of Chitin Deacetylases Restricts Tube Elongation in the Drosophila Trachea

Authors: Wang, Shenqiu; Jayaram, Satish Arcot; Hemphälä, Johanna; Senti, Kirsten-André; Tsarouhas, Vasilios; Jin, Haining; Samakovlis, Christos;

Septate-Junction-Dependent Luminal Deposition of Chitin Deacetylases Restricts Tube Elongation in the Drosophila Trachea

Abstract

The function of tubular epithelial organs like the kidney and lung is critically dependent on the length and diameter of their constituting branches. Genetic analysis of tube size control during Drosophila tracheal development has revealed that epithelial septate junction (SJ) components and the dynamic chitinous luminal matrix coordinate tube growth. However, the underlying molecular mechanisms controlling tube expansion so far remained elusive. Here, we present the analysis of two luminal chitin binding proteins with predicted polysaccharide deacetylase activities (ChLDs). ChLDs are required to assemble the cable-like extracellular matrix (ECM) and restrict tracheal tube elongation. Overexpression of native, but not of mutated, ChLD versions also interferes with the structural integrity of the intraluminal ECM and causes aberrant tube elongation. Whereas ChLD mutants have normal SJ structure and function, the luminal deposition of the ChLD requires intact cellular SJs. This identifies a new molecular function for SJs in the apical secretion of ChLD and positions ChLD downstream of the SJs in tube length control. The deposition of the chitin luminal matrix first promotes and coordinates radial tube expansion. We propose that the subsequent structural modification of chitin by chitin binding deacetylases selectively instructs the termination of tube elongation to the underlying epithelium.

Keywords

Agricultural and Biological Sciences(all), Biochemistry, Genetics and Molecular Biology(all), Amidohydrolases, Extracellular Matrix, Trachea, Intercellular Junctions, Phenotype, Morphogenesis, Animals, Drosophila Proteins, Drosophila, Cell Shape

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    225
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
225
Top 1%
Top 10%
Top 1%
hybrid