<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Interaction between Notch signalling and Lunatic fringe during somite boundary formation in the mouse
pmid: 10330372
Interaction between Notch signalling and Lunatic fringe during somite boundary formation in the mouse
The process of somitogenesis can be divided into three major events: the prepatterning of the mesoderm; the formation of boundaries between the prospective somites; and the cellular differentiation of the somites. Expression and functional studies have demonstrated the involvement of the murine Notch pathway in somitogenesis, although its precise role in this process is not yet well understood. We examined the effect of mutations in the Notch pathway elements Delta like 1 (Dll1), Notch1 and RBPJkappa on genes expressed in the presomitic mesoderm (PSM) and have defined the spatial relationships of Notch pathway gene expression in this region.We have shown that expression of Notch pathway genes in the PSM overlaps in the region where the boundary between the posterior and anterior halves of two consecutive somites will form. The Dll1, Notch1 and RBPJkappa mutations disrupt the expression of Lunatic fringe (L-fng), Jagged1, Mesp1, Mesp2 and Hes5 in the PSM. Furthermore, expression of EphA4, mCer 1 and uncx4.1, markers for the anterior-posterior subdivisions of the somites, is down-regulated to different extents in Notch pathway mutants, indicating a global alteration of pattern in the PSM.We propose a model for the mechanism of somite border formation in which the activity of Notch in the PSM is restricted by L-fng to a boundary-forming territory in the posterior half of the prospective somite. In this region, Notch function activates a set of genes that are involved in boundary formation and anterior-posterior somite identity.
- University of Toronto Canada
- Lunenfeld-Tanenbaum Research Institute Canada
- Ontario Institute for Cancer Research Canada
- Case Western Reserve University United States
- Mount Sinai Hospital Canada
Male, 570, Notch, Signal-Transduction, Proteins: me, 610, Mesoderm, Embryonic and Fetal Development, Mice, Receptors, Medicine and Health Sciences, Animals, Membrane-Proteins: ge, SUPPORT-NON-U-S-GOVT, Body Patterning, Body-Patterning, Agricultural and Biological Sciences(all), Receptors, Notch, me, Biochemistry, Genetics and Molecular Biology(all), Intracellular Signaling Peptides and Proteins, Life Sciences, Glycosyltransferases, Membrane Proteins, Nuclear Proteins, Proteins, SUPPORT-U-S-GOVT-NON-P-H-S, Fetal-Development, DNA-Binding Proteins, Somites, Mutagenesis, Immunoglobulin J Recombination Signal Sequence-Binding Protein, Female, DNA-Binding-Proteins: ge, Signal Transduction
Male, 570, Notch, Signal-Transduction, Proteins: me, 610, Mesoderm, Embryonic and Fetal Development, Mice, Receptors, Medicine and Health Sciences, Animals, Membrane-Proteins: ge, SUPPORT-NON-U-S-GOVT, Body Patterning, Body-Patterning, Agricultural and Biological Sciences(all), Receptors, Notch, me, Biochemistry, Genetics and Molecular Biology(all), Intracellular Signaling Peptides and Proteins, Life Sciences, Glycosyltransferases, Membrane Proteins, Nuclear Proteins, Proteins, SUPPORT-U-S-GOVT-NON-P-H-S, Fetal-Development, DNA-Binding Proteins, Somites, Mutagenesis, Immunoglobulin J Recombination Signal Sequence-Binding Protein, Female, DNA-Binding-Proteins: ge, Signal Transduction
54 Research products, page 1 of 6
- 2013IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).225 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
