Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulation Arrhythm...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation Arrhythmia and Electrophysiology
Article . 2018 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Oxidized CaMKII (Ca 2+ /Calmodulin-Dependent Protein Kinase II) Is Essential for Ventricular Arrhythmia in a Mouse Model of Duchenne Muscular Dystrophy

Authors: Qiongling, Wang; Ann P, Quick; Shuyi, Cao; Julia, Reynolds; David Y, Chiang; David, Beavers; Na, Li; +4 Authors

Oxidized CaMKII (Ca 2+ /Calmodulin-Dependent Protein Kinase II) Is Essential for Ventricular Arrhythmia in a Mouse Model of Duchenne Muscular Dystrophy

Abstract

Background: Duchenne muscular dystrophy patients are prone to ventricular arrhythmias, which may be caused by abnormal calcium (Ca 2+ ) homeostasis and elevated reactive oxygen species. CaMKII (Ca 2+ /calmodulin-dependent protein kinase II) is vital for normal Ca 2+ homeostasis, but excessive CaMKII activity contributes to abnormal Ca 2+ homeostasis and arrhythmias in cardiomyocytes. Reactive oxygen species induce CaMKII to become autonomously active. We hypothesized that genetic inhibition of CaMKII oxidation (ox-CaMKII) in a mouse model of Duchenne muscular dystrophy can alleviate abnormal Ca 2+ homeostasis, thus, preventing ventricular arrhythmia. The objective of this study was to test if selective loss of ox-CaMKII affects ventricular arrhythmias in the mdx mouse model of Duchenne muscular dystrophy. Methods and Results: 5-(6)-Chloromethyl-2,7-dichlorodihydrofluorescein diacetate staining revealed increased reactive oxygen species production in ventricular myocytes isolated from mdx mice, which coincides with elevated ventricular ox-CaMKII demonstrated by Western blotting. Genetic inhibition of ox-CaMKII by knockin replacement of the regulatory domain methionines with valines (MM-VV [CaMKII M281/282V]) prevented ventricular tachycardia in mdx mice. Confocal calcium imaging of ventricular myocytes isolated from mdx :MM-VV mice revealed normalization of intracellular Ca 2+ release events compared with cardiomyocytes from mdx mice. Abnormal action potentials assessed by optical mapping in mdx mice were also alleviated by genetic inhibition of ox-CaMKII. Knockout of the NADPH oxidase regulatory subunit p47 phox normalized elevated ox-CaMKII, repaired intracellular Ca 2+ homeostasis, and rescued inducible ventricular arrhythmias in mdx mice. Conclusions: Inhibition of reactive oxygen species or ox-CaMKII protects against proarrhythmic intracellular Ca 2+ handling and prevents ventricular arrhythmia in a mouse model of Duchenne muscular dystrophy.

Related Organizations
Keywords

Heart Ventricles, Action Potentials, Arrhythmias, Cardiac, Mice, Transgenic, Muscular Dystrophy, Duchenne, Disease Models, Animal, Oxidative Stress, Heart Rate, NADPH Oxidase 2, Mice, Inbred mdx, Animals, Calcium, Calcium Signaling, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Reactive Oxygen Species, Oxidation-Reduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
bronze