Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Immunityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Immunity
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Immunity
Article . 2011
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Immunity
Article . 2011 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

The Calcium Sensors STIM1 and STIM2 Control B Cell Regulatory Function through Interleukin-10 Production

Authors: Matsumoto, Masanori; Fujii, Yoko; Baba, Akemi; Hikida, Masaki; Kurosaki, Tomohiro; Baba, Yasuhiko;

The Calcium Sensors STIM1 and STIM2 Control B Cell Regulatory Function through Interleukin-10 Production

Abstract

A chief Ca(2+) entry pathway in immune cells is store-operated Ca(2+) (SOC) influx, which is triggered by depletion of Ca(2+) from the endoplasmic reticulum (ER). However, its physiological role in B cells remains elusive. Here, we show that ER calcium sensors STIM1- and STIM2-induced SOC influx is critical for B cell regulatory function. B cell-specific deletion of STIM1 and STIM2 in mice caused a profound defect in B cell receptor (BCR)-induced SOC influx and proliferation. However, B cell development and antibody responses were unaffected. Remarkably, B cells lacking both STIM proteins failed to produce the anti-inflammatory cytokine IL-10 because of defective activation of nuclear factor of activated T cells (NFAT) after BCR stimulation. This resulted in exacerbation of experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. Our data establish STIM-dependent SOC influx as a key signal for B cell regulatory function required to limit autoimmunity.

Keywords

B-Lymphocytes, Brain Diseases, Membrane Glycoproteins, NFATC Transcription Factors, Cell Survival, Immunology, Receptors, Antigen, B-Cell, Hashimoto Disease, Interleukin-10, Mice, Infectious Diseases, Immunology and Allergy, Animals, Encephalitis, Calcium, Calcium Channels, Stromal Interaction Molecule 1, Stromal Interaction Molecule 2, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    243
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
243
Top 1%
Top 10%
Top 1%
hybrid