Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

SCFs in the new millennium

Authors: E K, Lee; J A, Diehl;
Abstract

Substrate-specific degradation is a key feature of the ubiquitin proteasome system. Substrate specificity is typically directed by the E3 or ubiquitin ligase; such specificity can be conferred either by ligase modification or expression or conversely via modification of substrates that permit their recognition by a specific E3 ligase. The most well-known example of such complexes are the Cullin-RING ligases (CRLs). CRLs are composed of one of seven cullin-family scaffold proteins; the CRL serves as a scaffold that interacts directly with a RING-domain enzyme (Rbx1/2) through an extensive protein-protein interface within the globular C-terminal domain. At the N terminus, the cullin associates with an adaptor protein through cullin-repeat motifs. This adaptor, in turn, facilitates recruitment of a substrate-specifying factor that recruits the target to be ubiquitylated. The prototypical CRL is the cul1-containing complex, commonly referred to as the Skp1-Cul1-Fbox (SCF) ligase. SCF ligases contribute to the timely destruction of numerous substrates thereby ensuring normal cell growth. The importance of SCF function is highlighted by cancer-specific alterations in either the expression or the function of select F-box substrate-specific adaptors that results in neoplastic conversion. Herein, we discuss the current understanding of SCF function and contribution to cell biology.

Related Organizations
Keywords

SKP Cullin F-Box Protein Ligases, NEDD8 Protein, Humans, Cullin Proteins, beta-Transducin Repeat-Containing Proteins, Models, Biological, S-Phase Kinase-Associated Proteins, Ubiquitins, Substrate Specificity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%
bronze