Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Platelet Factor XIII and Calpain Negatively Regulate Integrin αIIbβ3 Adhesive Function and Thrombus Growth

Authors: Suhasini, Kulkarni; Shaun P, Jackson;

Platelet Factor XIII and Calpain Negatively Regulate Integrin αIIbβ3 Adhesive Function and Thrombus Growth

Abstract

Excessive accumulation of platelets at sites of athero-sclerotic plaque rupture leads to the development of arterial thrombi, precipitating clinical events such as the acute coronary syndromes and ischemic stroke. The major platelet adhesion receptor glycoprotein (GP) IIb-IIIa (integrin alpha(IIb)beta3) plays a central role in this process by promoting platelet aggregation and thrombus formation. We demonstrate here a novel mechanism down-regulating integrin alpha(IIb)beta3 adhesive function, involving platelet factor XIII (FXIII) and calpain, which serves to limit platelet aggregate formation and thrombus growth. This mechanism principally occurs in collagen-adherent platelets and is induced by prolonged elevations in cytosolic calcium, leading to dramatic changes in platelet morphology (membrane contraction, fragmentation, and microvesiculation) and a specific reduction in integrin alpha(IIb)beta3 adhesive function. Adhesion receptor signal transduction plays a major role in the process by sustaining cytosolic calcium flux necessary for calpain and FXIII activation. Analysis of thrombus formation on a type I fibrillar collagen substrate revealed an important role for FXIII and calpain in limiting platelet recruitment into developing aggregates, thereby leading to reduced thrombus formation. These studies define a previously unidentified role for platelet FXIII and calpain in regulating integrin alpha(IIb)beta3 adhesive function. Moreover, they demonstrate the existence of an autoregulatory feedback mechanism that serves to limit excessive platelet accumulation on highly reactive thrombogenic surfaces.

Related Organizations
Keywords

Blood Platelets, Time Factors, Factor XIII, Calpain, Cell Membrane, Down-Regulation, Thrombosis, Platelet Glycoprotein GPIIb-IIIa Complex, Mice, Cytosol, von Willebrand Factor, Cell Adhesion, Animals, Humans, Calcium, Collagen, Fluorescent Antibody Technique, Indirect, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    86
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
86
Top 10%
Top 10%
Top 10%
gold