Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

A Protein Phosphatase-1γ1 Isoform Selectivity Determinant in Dendritic Spine-associated Neurabin

Authors: Leigh C, Carmody; Patricia A, Bauman; Martha A, Bass; Nirmala, Mavila; Anna A, DePaoli-Roach; Roger J, Colbran;

A Protein Phosphatase-1γ1 Isoform Selectivity Determinant in Dendritic Spine-associated Neurabin

Abstract

Protein phosphatase-1 (PP1) catalytic subunit isoforms interact with diverse proteins, typically containing a canonical (R/K)(V/I)XF motif. Despite sharing approximately 90% amino acid sequence identity, PP1beta and PP1gamma1 have distinct subcellular localizations that may be determined by selective interactions with PP1-binding proteins. Immunoprecipitation studies from brain and muscle extracts demonstrated that PP1gamma1 selectively interacts with spinophilin and neurabin, F-actin-targeting proteins, whereas PP1beta selectively interacted with G(M)/R(GL), the striated-muscle glycogen-targeting subunit. Glutathione S-transferase (GST) fusion proteins containing residues 146-493 of neurabin (GST-Nb-(146-493)) or residues 1-240 of G(M)/R(GL) (GST-G(M)-(1-240)) recapitulated these isoform selectivities in binding and phosphatase activity inhibition assays. Site-directed mutagenesis indicated that this isoform selectivity was not due to sequence differences between the canonical PP1-binding motifs (neurabin, (457)KIKF(460); G(M)/R(GL), (65)RVSF(68)). A chimeric GST fusion protein containing residues 1-64 of G(M)/R(GL) fused to residues 457-493 of neurabin (GST-G(M)/Nb) selectively bound to and inhibited PP1gamma1, whereas a GST-Nb/G(M) chimera containing Nb-(146-460) fused to G(M)-(69-240) selectively interacted with and weakly inhibited PP1beta, implicating domain(s) C-terminal to the (R/K)(V/I)XF motif as determinants of PP1 isoform selectivity. Deletion of Pro(464) and Ile(465) in neurabin (deltaPI) to equally space a conserved cluster of amino acids from the (R/K)(V/I)XF motif as in G(M)/R(GL) severely compromised the ability of neurabin to bind and inhibit both isoforms but did not affect PP1gamma1 selectivity. Further analysis of a series of C-terminal truncated GST-Nb-(146-493) proteins identified residues 473-479 of neurabin as containing a crucial PP1gamma1-selectivity determinant. In combination, these data identify a novel PP1gamma1-selective interaction domain in neurabin that may allow for selective regulation and/or subcellular targeting of PP1 isoforms.

Related Organizations
Keywords

Dose-Response Relationship, Drug, Muscles, Amino Acid Motifs, Blotting, Western, Genetic Vectors, Microfilament Proteins, Molecular Sequence Data, Brain, Nerve Tissue Proteins, Dendrites, Actins, Mice, Catalytic Domain, Mutation, Mutagenesis, Site-Directed, Phosphoprotein Phosphatases, Animals, Amino Acid Sequence, Gene Deletion, Glutathione Transferase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
gold