Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Developmentarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 1997 . Peer-reviewed
Data sources: Crossref
Development
Article . 1997
versions View all 2 versions

In vivo functional analysis of the Hoxa-1 3′ retinoic acid response element (3′ RARE)

Authors: V, Dupé; M, Davenne; J, Brocard; P, Dollé; M, Mark; A, Dierich; P, Chambon; +1 Authors

In vivo functional analysis of the Hoxa-1 3′ retinoic acid response element (3′ RARE)

Abstract

ABSTRACT Retinoids are essential for normal development and both deficiency and excess of retinoic acid (RA) are teratogenic. Retinoic acid response elements (RAREs) have been identified in Hox gene promoters suggesting that endogenous retinoids may be involved in the direct control of Hox gene patterning functions. In order to test this hypothesis, we have mutated the Hoxa-1 3′ RARE using the Cre-loxP targeting strategy, and studied its functional role during mouse development. We find that this enhancer plays an important role in the early establishment of the Hoxa-1 anterior expression boundary in the neural plate. This early disturbance in Hoxa-1 activation results in rhombomere and cranial nerve abnormalities reminiscent of those obtained in the Hoxa-1 total knockout, although their severity and penetrance are lower, thus providing strong evidence for direct control of Hox gene function by retinoids during normal development. Interestingly, we also find that the Hoxa-1 expression response to RA treatment is not entirely controlled by the RARE, suggesting the existence of other retinoid-induced factors mediating the Hoxa-1 response to RA and/or the presence of additional RAREs. Interestingly, although the RARE is not required for the spatiotemporal control of colinear expression of the Hoxa genes, it is absolutely required for correct Hoxa-2 expression in rhombomere 5.

Keywords

Homeodomain Proteins, Recombination, Genetic, Kanamycin Kinase, Homozygote, Genes, Homeobox, Gene Expression Regulation, Developmental, Nervous System, Polymerase Chain Reaction, Mice, Mutant Strains, Recombinant Proteins, Mice, Phosphotransferases (Alcohol Group Acceptor), Enhancer Elements, Genetic, Genes, Reporter, Mutagenesis, Site-Directed, Animals, Promoter Regions, Genetic, In Situ Hybridization, DNA Primers, Sequence Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    322
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
322
Top 10%
Top 1%
Top 1%