Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://dx.doi.org/10...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Letters
Article . 2007
versions View all 3 versions

Eye‐open at birth phenotype with reduced keratinocyte motility in LGR4 null mice

Authors: Kato, Shigeki; Mohri, Yasuaki; Matsuo, Tsuyoshi; Ogawa, Eisaku; Umezawa, Akihiro; Okuyama, Ryuhei; Nishimori, Katsuhiko;

Eye‐open at birth phenotype with reduced keratinocyte motility in LGR4 null mice

Abstract

We observed a consistent eye‐open at birth (EOB) phenotype in mouse pups homozygous for a leucine‐rich repeat containing G‐protein coupled receptor 4 (Lgr4) allele deleting the whole transmembrane domain coding region. An in vitro wound‐healing scratch assay showed notably reduced keratinocyte motility in the null mice. Phalloidin staining of F‐actin in the eyelid epidermis was also reduced. We also generated keratinocyte‐specific Lgr4 deficient mice, circumventing the embryonic/neonatal lethality and kidney abnormalities. Most of the conditional Lgr4 knockout mice showed the EOB phenotype. Thus, Lgr4 might be a novel gene class regulating cell motility.

Keywords

Keratinocytes, Mice, Knockout, Cell Survival, Gene Expression Regulation, Developmental, Embryonic Structures, EOB, Gene deletion mice, Eye, Receptors, G-Protein-Coupled, Mice, GPCR, Phenotype, LGR4, Animals, Newborn, GPR48, Animals, Eye Abnormalities, Keratinocyte, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%