Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2006
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Proceedings of the National Academy of Sciences
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions

Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK:BMAL1

Authors: Yujnovsky, Irene; Hirayama, Jun; Doi, Masao; Borrelli, Emiliana; Sassone-Corsi, Paolo;

Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK:BMAL1

Abstract

Environmental cues modulate a variety of intracellular pathways whose signaling is integrated by the molecular mechanism that constitutes the circadian clock. Although the essential gears of the circadian machinery have been elucidated, very little is known about the signaling systems regulating it. Here, we report that signaling mediated by the dopamine D2 receptor (D2R) enhances the transcriptional capacity of the CLOCK:BMAL1 complex. This effect involves the mitogen-activated protein kinase transduction cascade and is associated with a D2R-induced increase in the recruiting and phosphorylation of the transcriptional coactivator cAMP-responsive element-binding protein (CREB) binding protein. Importantly, CLOCK:BMAL1-dependent activation and light-inducibility of mPer1 gene transcription is drastically dampened in retinas of D2R-null mice. Because dopamine is the major catecholamine in the retina, central for the neural adaptation to light, our findings establish a physiological link among photic input, dopamine signaling, and the molecular clock machinery.

Keywords

Mitogen-Activated Protein Kinase Kinases, Flavoproteins, Light, Receptors, Dopamine D2, Dopamine, ARNTL Transcription Factors, CLOCK Proteins, Down-Regulation, Nuclear Proteins, Cell Cycle Proteins, Period Circadian Proteins, [SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology, CREB-Binding Protein, Circadian Rhythm, Cryptochromes, Mice, Gene Expression Regulation, Basic Helix-Loop-Helix Transcription Factors, Animals, Phosphorylation, Promoter Regions, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    170
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
170
Top 1%
Top 10%
Top 10%
bronze