Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Bioche...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1101/2020.0...
Article . 2020 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://www.biorxiv.org/conten...
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Biochemical Parasitology
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions

Ultra-structural analysis and morphological changes during the differentiation of trophozoite to cyst in Entamoeba invadens

Authors: Nishant Singh; Sarah Naiyer; Sudha Bhattacharya;

Ultra-structural analysis and morphological changes during the differentiation of trophozoite to cyst in Entamoeba invadens

Abstract

AbstractEntamoeba Histolytica, a pathogenic parasite, is the causative organism of amoebiasis and uses human colon to complete its life cycle. It destroys intestinal tissue leading to invasive disease. Since it does not form cyst in culture medium, a reptilian parasiteEntamoeba invadensserves as the model system to study encystation. Detailed investigation on the mechanism of cyst formation, information on ultra-structural changes and cyst wall formation during encystation are still lacking inE. invadens. Here, we used electron microscopy to study the ultrastructural changes during cyst formation and showed that the increase in heterochromatin patches and deformation of nuclear shape were early events in encystation. These changes peaked at ~20h post induction, and normal nuclear morphology was restored by 72h. Two types of cellular structures were visible by 16h. One was densely stained and consisted of the cytoplasmic mass with clearly visible nucleus. The other consisted of membranous shells with large vacuoles and scant cytoplasm. The former structure developed into the mature cyst while the latter structure was lost after 20h, This study of ultra-structural changes during encystation inE. invadensopens up the possibilities for further investigation into the mechanisms involved in this novel process.

Keywords

Entamoeba, Parasite Encystment, Microscopy, Electron, Transmission, Heterochromatin, Entamoeba histolytica, Animals, Humans, Reptiles, Trophozoites, Host Specificity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
hybrid