Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nucleic Acids Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nucleic Acids Research
Article . 2015 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nucleic Acids Research
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2015
License: CC BY NC
Data sources: PubMed Central
versions View all 3 versions

A SnoRNA-derived piRNA interacts with human interleukin-4 pre-mRNA and induces its decay in nuclear exosomes

Authors: Zhong, Fudi; Zhou, Nan; Wu, Kang; Guo, Yubiao; Tan, Weiping; Zhang, Hong; Zhang, Xue; +13 Authors

A SnoRNA-derived piRNA interacts with human interleukin-4 pre-mRNA and induces its decay in nuclear exosomes

Abstract

PIWI interacting RNAs (piRNAs) are highly expressed in germline cells and are involved in maintaining genome integrity by silencing transposons. These are also involved in DNA/histone methylation and gene expression regulation in somatic cells of invertebrates. The functions of piRNAs in somatic cells of vertebrates, however, remain elusive. We found that snoRNA-derived and C (C')/D' (D)-box conserved piRNAs are abundant in human CD4 primary T-lymphocytes. piRNA (piR30840) significantly downregulated interleukin-4 (IL-4) via sequence complementarity binding to pre-mRNA intron, which subsequently inhibited the development of Th2 T-lymphocytes. Piwil4 and Ago4 are associated with this piRNA, and this complex further interacts with Trf4-Air2-Mtr4 Polyadenylation (TRAMP) complex, which leads to the decay of targeted pre-mRNA through nuclear exosomes. Taken together, we demonstrate a novel piRNA mechanism in regulating gene expression in highly differentiated somatic cells and a possible novel target for allergy therapeutics.

Related Organizations
Keywords

CD4-Positive T-Lymphocytes, Cell Nucleus, Exosome Multienzyme Ribonuclease Complex, RNA Stability, Down-Regulation, Asthma, Introns, HEK293 Cells, Th2 Cells, Gene Expression Regulation, RNA Precursors, RNA, Humans, RNA, Small Nucleolar, Interleukin-4, RNA, Messenger, RNA, Small Interfering, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    94
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
94
Top 1%
Top 10%
Top 10%
Green
gold