Structure of the VP16 transactivator target in the Mediator
Structure of the VP16 transactivator target in the Mediator
The human Mediator coactivator complex interacts with many transcriptional activators and facilitates recruitment of RNA polymerase II to promote target gene transcription. The MED25 subunit is a critical target of the potent herpes simplex 1 viral transcriptional activator VP16. Here we determine the solution structure of the MED25 VP16-binding domain (VBD) and define its binding site for the N-terminal portion of the VP16 transactivation domain (TADn). A hydrophobic furrow, formed by a β-barrel and two α-helices in MED25 VBD, interacts tightly with VP16 TADn. Mutations in this furrow prevent binding of VP16 TAD to MED25 VBD and interfere with the ability of overexpressed MED25 VBD to inhibit VP16-dependent transcriptional activation in vivo. This detailed molecular understanding of transactivation by the benchmark activator VP16 could provide important insights into viral and cellular gene activation mechanisms.
- Harvard University United States
- Harvard Medical School United States
- Department of Cell Biology Harvard Medical School United States
- National Institute of Advanced Industrial Science and Technology Japan
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School United States
Mediator Complex, Protein Conformation, Mutation, Humans, Point Mutation, Herpes Simplex Virus Protein Vmw65, Nuclear Magnetic Resonance, Biomolecular, Article
Mediator Complex, Protein Conformation, Mutation, Humans, Point Mutation, Herpes Simplex Virus Protein Vmw65, Nuclear Magnetic Resonance, Biomolecular, Article
26 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).80 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
