Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cell Stress & Ch...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Stress & Chaperones
Article . 2015 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cell Stress & Chaperones
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2014
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ProdInra
Article . 2015
License: CC BY SA
Data sources: ProdInra
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL INRAE
Article . 2014
Data sources: HAL INRAE
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 8 versions

C-terminal amino acids are essential for human heat shock protein 70 dimerization

Authors: Marcion, Guillaume; Seigneuric, Renaud; Chavanne, Evelyne; Artur, Yves; Briand, Loïc; Hadi, Tarik; Gobbo, Jessica; +2 Authors

C-terminal amino acids are essential for human heat shock protein 70 dimerization

Abstract

The human inducible heat shock protein 70 (hHsp70), which is involved in several major pathologies, including neurodegenerative disorders and cancer, is a key molecular chaperone and contributes to the proper protein folding and maintenance of a large number of protein structures. Despite its role in disease, the current structural knowledge of hHsp70 is almost exclusively based on its Escherichia coli homolog, DnaK, even though these two proteins only share ~50 % amino acid identity. For the first time, we describe a complete heterologous production and purification strategy that allowed us to obtain a large amount of soluble, full-length, and non-tagged hHsp70. The protein displayed both an ATPase and a refolding activity when combined to the human Hsp40. Multi-angle light scattering and bio-layer interferometry analyses demonstrated the ability of hHsp70 to homodimerize. The role of the C-terminal part of hHsp70 was identified and confirmed by a study of a truncated version of hHsp70 that could neither dimerize nor present refolding activity.

Keywords

570, Médecine humaine et pathologie, [SDV.CAN]Life Sciences [q-bio]/Cancer, EC 3.6.1.- (dnaK protein, E coli), Biochimie, biophysique & biologie moléculaire, hspa1a, Biochemistry, Protein Refolding, Protein Structure, Secondary, [SDV.CAN] Life Sciences [q-bio]/Cancer, 616, Escherichia coli, cancer, Humans, HSP70 Heat-Shock Proteins, HSP70 Heat-Shock Proteins/chemistry/genetics/metabolism, Isoelectric Point, Cancer, Recombinant Proteins/biosynthesis/chemistry/isolation & purification, Original Paper, [SDV.MHEP] Life Sciences [q-bio]/Human health and pathology, Circular Dichroism, Escherichia coli Proteins, hsp70, hsp70;hspa1a;dimer;monomer;cancer, Cell Biology, monomer, dimer, Life sciences, Recombinant Proteins, Spectrometry, Fluorescence, Escherichia coli Proteins/chemistry/metabolism, Escherichia coli/metabolism, Sciences du vivant, Human health and pathology, Dimerization, [SDV.MHEP]Life Sciences [q-bio]/Human health and pathology, Biochemistry, biophysics & molecular biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
Green
hybrid