Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuroscience Bulleti...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience Bulletin
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Modulation of M4 muscarinic acetylcholine receptors by interacting proteins

Authors: Ming-Lei, Guo; Li-Min, Mao; John Q, Wang;

Modulation of M4 muscarinic acetylcholine receptors by interacting proteins

Abstract

Protein-protein interactions represent an important mechanism for posttranslational modifications of protein expression and function. In brain cells, surface-expressed and membrane-bound neurotransmitter receptors are common proteins that undergo dynamic protein-protein interactions between their intracellular domains and submembranous regulatory proteins. Recently, the Gα(i/o)-coupled muscarinic M4 receptor (M4R) has been revealed to be one of these receptors. Through direct interaction with the intracellular loops or C-terminal tails of M4Rs, M4R interacting proteins (M4RIPs) vigorously regulate the efficacy of M4R signaling. A synapse-enriched protein kinase, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), exemplifies a prototype model of M4RIPs, and is capable of binding to the second intracellular loop of M4Rs. Through an activity- and phosphorylation-dependent mechanism, CaMKII potentiates the M4R/Gα(i/o)-mediated inhibition of M4R efficacy in inhibiting adenylyl cyclase and cAMP production. In striatal neurons where M4Rs are most abundantly expressed, M4RIPs dynamically control M4R activity to maintain a proper cholinergic tone in these neurons. This is critical for maintaining the acetylcholine-dopamine balance in the basal ganglia, which determines the behavioral responsiveness to dopamine stimulation by psychostimulants.

Keywords

Neurons, Receptor, Muscarinic M4, Animals, Phosphorylation, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Corpus Striatum, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Average
bronze