Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ NeuroImagearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
NeuroImage
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
NeuroImage
Article . 2008
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Catechol-O-methyltransferase val158met genotype influences neural processing of reward anticipation

Authors: Thomas Sander; Florian Schlagenhauf; Imke Puls; Jana Wrase; Andreas Heinz; Anne Beck; Katharina Schmack; +4 Authors

Catechol-O-methyltransferase val158met genotype influences neural processing of reward anticipation

Abstract

Reward processing depends critically on dopaminergic neurotransmission in the ventral striatum. The common polymorphism val(158)met of catechol-O-methyltransferase (COMT) accounts for significant interindividual variations in dopamine (DA) degradation, although the direct effect of COMT on striatal DA might be limited. Using fMRI we assessed the influence of COMT val(158)met genotype on brain activations elicited by the anticipation of monetary gains and losses in forty-four healthy volunteers. We found that the met(158) allele, which is presumably linked to higher synaptic DA levels, was associated with higher responses in ventral striatum to loss incentives. There was a linear relationship between the number of met(158) alleles and ventral striatal activity. Furthermore, we observed a similar gene-dose effect in the anterior temporal cortex, a region that has been linked to the coupling of sensory information with emotional contents. Temporal cortex also showed enhanced connectivity to the ventral striatum during the processing of incentive stimuli. Increased ventral striatal reactivity to loss incentives related to the met(158) allele might contribute to the observed association of the met(158) allele to higher loss aversion behaviour. Current evidence and our results are compatible with an interpretation that construes this effect of COMT genotype on striatal reactivity as a result of a cortico-striatal interaction.

Keywords

Adult, Cerebral Cortex, Male, Genotype, Catechol O-Methyltransferase, Magnetic Resonance Imaging, Corpus Striatum, Reward, Humans, Attention, Female, Evoked Potentials, Intuition

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    64
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
64
Top 10%
Top 10%
Top 10%
gold