<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Imaging cilia in Drosophila melanogaster
pmid: 25837397
Imaging cilia in Drosophila melanogaster
Drosophila melanogaster is a powerful genetic model organism to understand the function of proteins in specific cellular processes. Cilia have been extensively studied in Drosophila playing various sensory functions that are essential for fly survival. Indeed, flies defective in cilia formation cannot walk, fly, or feed properly. Drosophila harbors different types of cilia that can be motile or immotile or that can show compartimentalized (intraflagellar transport (IFT)-dependent) or cytoplasmic (IFT-independent) mode of assembly. Therefore, Drosophila represents an advantageous model organism to study the function of novel ciliary candidates and to address specific questions such as their requirement for IFT-dependent processes versus other aspects of cilia-associated functions. This chapter describes protocols to visualize cilia by direct or indirect fluorescent labeling and protocols to analyze ciliary ultrastructure by electron microscopy.
Axoneme, Sensory Receptor Cells, Staining and Labeling, Fluorescent Antibody Technique, Drosophila melanogaster, Microscopy, Electron, Transmission, Fluorescent Antibody Technique, Direct, Animals, Cilia, Fluorescent Antibody Technique, Indirect
Axoneme, Sensory Receptor Cells, Staining and Labeling, Fluorescent Antibody Technique, Drosophila melanogaster, Microscopy, Electron, Transmission, Fluorescent Antibody Technique, Direct, Animals, Cilia, Fluorescent Antibody Technique, Indirect
53 Research products, page 1 of 6
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
