Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 1992 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Coregulation of purine and histidine biosynthesis by the transcriptional activators BAS1 and BAS2.

Authors: B, Daignan-Fornier; G R, Fink;

Coregulation of purine and histidine biosynthesis by the transcriptional activators BAS1 and BAS2.

Abstract

We have found cross-pathway regulation between purine and histidine biosynthesis in yeast. The transcription factors BAS1 and BAS2/PHO2, which are also regulators of the histidine pathway, participate in the regulation of the purine biosynthetic pathway. Analysis of four genes of the purine pathway (ADE1, ADE2, ADE5,7, and ADE8) shows that their expression is repressed by adenine. The maximal basal and induced expression of these purine genes requires the presence of both BAS1 and BAS2. The factor BAS1 has been shown to bind at a site containing the TGACTC hexanucleotide motif in the ADE2 and ADE5,7 promoters. This motif is required for both basal and induced activation of the ADE2 gene by BAS1 and BAS2.

Keywords

Homeodomain Proteins, Binding Sites, Saccharomyces cerevisiae Proteins, Base Sequence, Recombinant Fusion Proteins, Molecular Sequence Data, Restriction Mapping, Saccharomyces cerevisiae, beta-Galactosidase, Fungal Proteins, Kinetics, Oligodeoxyribonucleotides, Purines, Trans-Activators, Histidine, DNA, Fungal, Promoter Regions, Genetic, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    173
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
173
Top 10%
Top 1%
Top 10%
bronze