Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular and Cellul...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Neuroscience
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Regulation of cortical dendrite development by Rap1 signaling

Authors: Phyllis Y. Wang; Anirvan Ghosh; Anirvan Ghosh; Yachi Chen;

Regulation of cortical dendrite development by Rap1 signaling

Abstract

Rap1 is a small GTP-binding protein that has been implicated in intracellular signaling and cytoskeletal control. Here, we show that Rap1 is expressed in rat cortical neurons and plays a critical role in dendritic development. Inhibition of Rap1 signaling either by expressing dominant negative mutant of Rap1 or Rap1GAP in cortical neurons reduced dendritic complexity. In contrast, expression of a constitutively active mutant of Rap1 (Rap1V12) induced dendritic growth and branching. Membrane depolarization, which induces dendritic growth via calcium influx, led to a rapid activation of Rap1 via cAMP and cGMP signaling. A CREB-dependent mechanism is involved in depolarization-induced dendritic growth in cortical neurons. Rap1 function contributed to depolarization induced CREB activation, and inhibition of CREB suppressed dendritic growth induced by Rap1V12. These observations identify Rap1 as a key mediator of calcium regulation of CREB-dependent transcription and dendritic development.

Keywords

Cerebral Cortex, Mitogen-Activated Protein Kinase 3, Gene Expression Regulation, Developmental, Cell Differentiation, Dendrites, Receptors, N-Methyl-D-Aspartate, Second Messenger Systems, Membrane Potentials, Rats, Animals, Newborn, Mutation, Cyclic AMP, Animals, Rats, Long-Evans, Calcium Channels, Calcium Signaling, Cyclic AMP Response Element-Binding Protein, Cyclic GMP, Cells, Cultured, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Top 10%