Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1995 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 1995
versions View all 2 versions

Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav

Authors: A, Tarakhovsky; M, Turner; S, Schaal; P J, Mee; L P, Duddy; K, Rajewsky; V L, Tybulewicz;

Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav

Abstract

Crosslinking of B- or T-cell antigen receptors results in the rapid tyrosine phosphorylation of a number of proteins, including Vav, a protein expressed in cells of the haematopoietic system. Vav contains an array of structural motifs that include Src-homology domains SH2/SH3 and regions of homology to the guanine-nucleotide-exchange protein Dbl, pleckstrin and protein kinase C (refs 5-9). Using the RAG-complementation approach, we have analysed in vivo differentiation and in vitro responses of B- and T-lineage cells generated by injection of embryonic stem cells homozygous for a null mutation in the vav gene into blastocysts of RAG-1- or RAG-2-deficient mice. Here we report that antigen receptor-mediated proliferative responses of B and T cells in vitro are severely reduced in the absence of Vav. We also suggest a direct link between the low proliferative response of Vav-deficient B and T cells and the reduced number of these cells in peripheral lymphoid organs of chimaeric mice.

Keywords

B-Lymphocytes, Chimera, T-Lymphocytes, Cell Cycle Proteins, Cell Differentiation, Cell Line, Mice, Receptors, Antigen, Proto-Oncogene Proteins, Antibody Formation, Animals, Proto-Oncogene Proteins c-vav, Cell Division, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    423
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
423
Top 10%
Top 1%
Top 0.1%