Powered by OpenAIRE graph

The Beat generation: a multigene family encoding IgSF proteins related to the Beat axon guidance molecule inDrosophila

Authors: G C, Pipes; Q, Lin; S E, Riley; C S, Goodman;

The Beat generation: a multigene family encoding IgSF proteins related to the Beat axon guidance molecule inDrosophila

Abstract

A previous genetic screen led to the identification of the beaten path (beat Ia) gene in Drosophila. Beat Ia contains two immunoglobulin (Ig) domains and appears to function as an anti-adhesive factor secreted by specific growth cones to promote axon defasciculation. We identify a family of 14 beat-like genes in Drosophila. In contrast to beat Ia, four novel Beat-family genes encode membrane-bound proteins. Moreover, mutations in each gene lead to much more subtle guidance phenotypes than observed in beat Ia. Genetic interactions between beat Ic and beat Ia reveal complementary functions. Our data suggest a model whereby Beat Ic (and perhaps other membrane-bound family members) functions in a pro-adhesive fashion to regulate fasciculation, while Beat Ia (the original secreted Beat) functions in an anti-adhesive fashion to regulate defasciculation.

Related Organizations
Keywords

Motor Neurons, Sequence Homology, Amino Acid, Molecular Sequence Data, Immunoglobulins, Genes, Insect, Nerve Tissue Proteins, Axons, Evolution, Molecular, Phenotype, Multigene Family, Mutation, Cell Adhesion, Animals, Drosophila Proteins, Drosophila, Amino Acid Sequence, Cell Adhesion Molecules, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 10%
Top 10%
Top 10%