Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genomicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genomics
Article . 1989 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genomics
Article . 1990
versions View all 2 versions

Localization of the muscle, liver, and brain glycogen phosphorylase genes on linkage maps of mouse chromosomes 19, 12, and 2, respectively

Authors: T, Glaser; K E, Matthews; J W, Hudson; P, Seth; D E, Housman; M M, Crerar;

Localization of the muscle, liver, and brain glycogen phosphorylase genes on linkage maps of mouse chromosomes 19, 12, and 2, respectively

Abstract

Mammalian glycogen phosphorylases comprise a family of three isozymes, muscle, liver, and brain, which are expressed selectively and to varying extents in a wide variety of cell types. To better understand the regulation of phosphorylase gene expression, we isolated partial cDNAs for all three isozymes from the rat and used these to map the corresponding genes in the mouse. Chromosome mapping was accomplished by comparing the segregation of phosphorylase restriction fragment length polymorphisms (RFLPs) with 16 reference loci in a multipoint interspecies backcross between Mus musculus domesticus and Mus spretus. The genes encoding muscle, liver, and brain phosphorylases (Pygm, Pygl, and Pygb) are assigned to mouse chromosomes 19, 12, and 2, respectively. Their location on separate chromosomes indicates that distinct cis-acting elements govern the differential expression of phosphorylase isozymes in various tissues. Our findings significantly extend the genetic maps of mouse chromosomes 2, 12, and 19 and can be used to define the location of phosphorylase genes in man more precisely. Finally, this analysis suggests that the previously mapped "muscle-deficient" mutation in mouse, mdf, is closely linked to the muscle phosphorylase gene. However, muscle phosphorylase gene structure and expression appear to be unaltered in mdf/mdf mice, indicating that this mutation is not an animal model for the human genetic disorder McArdle's disease.

Related Organizations
Keywords

Base Sequence, Phosphorylases, Genetic Linkage, Muscles, Molecular Sequence Data, Brain, Chromosome Mapping, DNA, Chromosomes, Rats, Isoenzymes, Blotting, Southern, Mice, Genes, Liver, Mutation, Animals, Humans, Amino Acid Sequence, Polymorphism, Restriction Fragment Length

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Average
Top 10%
Top 10%
gold