Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2011 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions

PTB-associated Splicing Factor (PSF) Functions as a Repressor of STAT6-mediated Igϵ Gene Transcription by Recruitment of HDAC1

Authors: Dong, Lijie; Zhang, Xinyu; Fu, Xiao; Zhang, Xianzhi; Gao, Xingjie; Zhu, Mengyu; Wang, Xinting; +6 Authors

PTB-associated Splicing Factor (PSF) Functions as a Repressor of STAT6-mediated Igϵ Gene Transcription by Recruitment of HDAC1

Abstract

Regulation of transcription requires cooperation between sequence-specific transcription factors and numerous coregulatory proteins. In IL-4/IL-13 signaling several coactivators for STAT6 have been identified, but the molecular mechanisms of STAT6-mediated gene transcription are still not fully understood. Here we identified by proteomic approach that the PTB-associated splicing factor (PSF) interacts with STAT6. In intact cells the interaction was observed only after IL-4 stimulation. The IL-4-induced tyrosine phosphorylation of both STAT6 and PSF is a prerequisite for the efficient association of the two proteins. Functional analysis demonstrated that ectopic expression of PSF resulted in inhibition of STAT6-mediated transcriptional activation and mRNA expression of the Igε germline heavy chain gene, whereas knockdown of PSF increased the STAT6-mediated responses. PSF recruited histone deacetylase 1 (HDAC1) to the STAT6 transcription complex, which resulted in reduction of H3 acetylation at the promoter regions of Ig heavy chain germline Igε and inhibition of STAT6-mediated transcription. In addition, the HDACs inhibitor trichostatin A (TSA) enhanced H3 acetylation, and reverted the PSF-mediated transcriptional repression of Igε gene transcription. In summary, these results identify PSF as a repressor of STAT6-mediated transcription that functions through recruitment of HDAC to the STAT6 transcription complex, and delineates a novel regulatory mechanism of IL-4 signaling that may have implications in the pathogenesis of allergic diseases and pharmacological HDAC inhibition in lymphomas.

Keywords

Transcriptional Activation, Genes, Immunoglobulin, Transcription, Genetic, RNA-Binding Proteins, Histone Deacetylase 1, Repressor Proteins, Protein Transport, Protein Interaction Mapping, Humans, Immunoglobulin epsilon-Chains, Interleukin-4, PTB-Associated Splicing Factor, STAT6 Transcription Factor, HeLa Cells, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Top 10%
Top 10%
Top 10%
gold