Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Infection and Immuni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Infection and Immunity
Article . 2004 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

Macrophages from Mice with the Restrictive Lgn1 Allele Exhibit Multifactorial Resistance to Legionella pneumophila

Authors: Isabelle, Derré; Ralph R, Isberg;

Macrophages from Mice with the Restrictive Lgn1 Allele Exhibit Multifactorial Resistance to Legionella pneumophila

Abstract

ABSTRACT Although Legionella pneumophila can multiply in diverse cell types from a variety of species, macrophages from most inbred mouse strains are nonpermissive for intracellular replication and allow little or no growth of the bacteria. This phenomenon is likely genetically controlled by the mouse naip5 ( birc1e ) gene located within the Lgn1 locus. In this study, we have investigated the resistance of C57BL/6J macrophages to L. pneumophila infection by examining the fate of both the bacterium and the infected cells compared to that in macrophages from the permissive A/J strain. Our results indicate that although the trafficking of the L. pneumophila -containing vacuole is partially disrupted in C57BL/6J macrophages, this cannot account for the severity of the defect in intracellular growth observed in this strain. Infected macrophages are lost shortly after infection, and at later times a larger fraction of the C57BL/6J macrophages in which L. pneumophila undergoes replication are apoptotic compared to those derived from A/J mice. Finally, a loss of bacterial counts occurs after the first round of growth. Therefore, the resistance mechanism of C57BL/6J macrophages to L. pneumophila infection appears to be multifactorial, and we discuss how early and late responses result in clearing the infection.

Related Organizations
Keywords

Macrophages, Apoptosis, Nerve Tissue Proteins, Neuronal Apoptosis-Inhibitory Protein, Legionella pneumophila, Mice, Inbred C57BL, Mice, Animals, Female, Genetic Predisposition to Disease, Legionnaires' Disease, Alleles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 10%
Top 10%
Top 10%
gold