Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2005 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Isolation of a Calmodulin-binding Transcription Factor from Rice (Oryza sativa L.)

Authors: Man Soo, Choi; Min Chul, Kim; Jae Hyuk, Yoo; Byeong Cheol, Moon; Sung Cheol, Koo; Byung Ouk, Park; Ju Huck, Lee; +6 Authors

Isolation of a Calmodulin-binding Transcription Factor from Rice (Oryza sativa L.)

Abstract

Calmodulin (CaM) regulates diverse cellular functions by modulating the activities of a variety of enzymes and proteins. However, direct modulation of transcription factors by CaM has been poorly understood. In this study, we isolated a putative transcription factor by screening a rice cDNA expression library by using CaM:horse-radish peroxidase as a probe. This factor, which we have designated OsCBT (Oryza sativa CaM-binding transcription factor), has structural features similar to Arabidopsis AtSRs/AtCAMTAs and encodes a 103-kDa protein because it contains a CG-1 homology DNA-binding domain, three ankyrin repeats, a putative transcriptional activation domain, and five putative CaM-binding motifs. By using a gel overlay assay, gel mobility shift assays, and site-directed mutagenesis, we showed that OsCBT has two different types of functional CaM-binding domains, an IQ motif, and a Ca(2+)-dependent motif. To determine the DNA binding specificity of OsCBT, we employed a random binding site selection method. This analysis showed that OsCBT preferentially binds to the sequence 5'-TWCG(C/T)GTKKKKTKCG-3' (W and K represent A or C and T or G, respectively). OsCBT was able to bind this sequence and activate beta-glucuronidase reporter gene expression driven by a minimal promoter containing tandem repeats of these sequences in Arabidopsis leaf protoplasts. Green fluorescent protein fusions of two putative nuclear localization signals of OsCBT, a bipartite and a SV40 type, were predominantly localized in the nucleus. Most interestingly, the transcriptional activation mediated by OsCBT was inhibited by co-transfection with a CaM gene. Taken together, our results suggest that OsCBT is a transcription activator modulated by CaM.

Related Organizations
Keywords

Binding Sites, DNA, Complementary, Base Sequence, DNA, Plant, Green Fluorescent Proteins, Molecular Sequence Data, Arabidopsis, Gene Expression, Oryza, Calmodulin, Escherichia coli, Mutagenesis, Site-Directed, Calmodulin-Binding Proteins, Amino Acid Sequence, Cloning, Molecular, Promoter Regions, Genetic, Gene Deletion, Gene Library, Glucuronidase, Glutathione Transferase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    111
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
111
Top 10%
Top 10%
Top 10%
gold