Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PROTEOMICSarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PROTEOMICS
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
PROTEOMICS
Article . 2009
versions View all 2 versions

Identification of apolipoproteinA1 reduction in the polycystic kidney by proteomics analysis of the Mxi1‐deficient mouse

Authors: Jong Hoon Park; Kyung Hyun Yoo; Je Kyung Seong; Min Joo Lee; Yo Na Kim;

Identification of apolipoproteinA1 reduction in the polycystic kidney by proteomics analysis of the Mxi1‐deficient mouse

Abstract

AbstractAutosomal dominant polycystic kidney disease is one of the most common human monogenic diseases in which extensive epithelial‐lined cysts develop in kidney and other organs. Affected kidneys are not only characterized by the formation of cysts, but also by changes associated with the extracellular matrix and interstitial inflammation, which can progress to fibrosis and loss of renal function. Mxi1 protein, which is a c‐myc antagonist, may be essential in controlling cellular growth and differentiation. Previously, multiple tubular cysts were observed in kidney of Mxi1‐deficient mice aged 6 months and more. Presently, 2‐DE and MALDI‐TOF MS was employed to identify the differentially expressed proteins in the kidney. Several proteins were identified, among them, apolipoproteinA1 which is a major component of the high‐density lipoprotein complex and has anti‐inflammation effects, was significantly decreased in the Mxi1‐deficient mouse. We confirm the development of inflammation and renal fibrosis and the expression of extracellular matrix molecules including transforming growth factor were also increased in cystic kidney. These results indicate that expression of proteins related with inflammation and renal fibrosis changes by Mxi1 inactivation in polycystic kidney.

Related Organizations
Keywords

Mice, Knockout, Extracellular Matrix Proteins, Polycystic Kidney Diseases, Apolipoprotein A-I, Proteome, Tumor Suppressor Proteins, Polycystic Kidney, Autosomal Dominant, Transforming Growth Factor beta1, Mice, Gene Expression Regulation, Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization, Basic Helix-Loop-Helix Transcription Factors, Animals, Humans, Electrophoresis, Gel, Two-Dimensional, RNA, Messenger

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average