Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Nippon Me...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Nippon Medical School
Article . 2009 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Dextran Sulfate and Stromal Cell Derived Factor-1 Promote CXCR4 Expression and Improve Bone Marrow Homing Efficiency of Infused Hematopoietic Stem Cells

Authors: Takashi Shimada; Makoto Migita; Kumi Adachi; Yuki Ooue; Mari Hayakawa; Yoshitaka Fukunaga; Jun Hayakawa; +2 Authors

Dextran Sulfate and Stromal Cell Derived Factor-1 Promote CXCR4 Expression and Improve Bone Marrow Homing Efficiency of Infused Hematopoietic Stem Cells

Abstract

Although the homing of hematopoietic stem cells (HSC) to the bone marrow (BM) is a crucial step in hematopoietic development and BM repopulation, the mechanisms underlying these processes have not been fully clarified. Recent studies suggest that interaction between the chemokine receptor CXCR4 and its ligand, stromal cell-derived factor 1 (SDF-1), plays a critical role in these processes. In addition, dextran sulfate increases plasma SDF-1 levels in mice and nonhuman primates. Thus, we examined the effects of preconditioning with SDF-1 and dextran sulfate on the homing efficiency of HSCs following BM transplantation in mice. We found that the preconditioning of donor mice with either SDF-1 or dextran sulfate enhanced the homing efficiency of infused HSCs in vivo. The greatest effects were obtained with dextran sulfate. Moreover, reverse transcriptase polymerase chain reaction analysis demonstrated that SDF-1 and dextran sulfate increased transcription of a variety of homing-related genes, including those for CXCR4, lymphocyte function associated antigen-1, matrix metalloproteinase-9, very late antigen-4/5, and macrophage inflammatory protein-1. We suggest that whereas SDF-1 directly acts to upregulate CXCR4 expression in HSCs, dextran sulfate acts via multiple pathways involved in the induction of various homing-related molecules, in addition to SDF-1. Thus, preconditioning donors with dextran sulfate offers a novel clinical approach for improving the homing and engraftment of HSCs in the BM.

Keywords

Male, Receptors, CXCR4, Reverse Transcriptase Polymerase Chain Reaction, Dextran Sulfate, Green Fluorescent Proteins, Hematopoietic Stem Cell Transplantation, Mice, Transgenic, Hematopoietic Stem Cells, Chemokine CXCL12, Recombinant Proteins, Mice, Inbred C57BL, Mice, Gene Expression Regulation, Bone Marrow, Cell Movement, Animals, Cells, Cultured, Whole-Body Irradiation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Average
Top 10%
gold