Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioorganic & Medicin...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioorganic & Medicinal Chemistry
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Identifying novel targets in renal cell carcinoma: Design and synthesis of affinity chromatography reagents

Authors: Muriel, Bonnet; Jack U, Flanagan; Denise A, Chan; Amato J, Giaccia; Michael P, Hay;

Identifying novel targets in renal cell carcinoma: Design and synthesis of affinity chromatography reagents

Abstract

Two novel scaffolds, 4-pyridylanilinothiazoles (PAT) and 3-pyridylphenylsulfonyl benzamides (PPB), previously identified as selective cytotoxins for von Hippel-Lindau-deficient Renal Carcinoma cells, were used as templates to prepare affinity chromatography reagents to aid the identification of the molecular targets of these two classes. Structure-activity data and computational models were used to predict possible points of attachment for linker chains. In the PAT class, Click coupling of long chain azides with 2- and 3-pyridylanilinothiazoleacetylenes gave triazole-linked pyridylanilinothiazoles which did not retain the VHL-dependent selectivity of parent analogues. For the PPB class, Sonagashira coupling of 4-iodo-(3-pyridylphenylsulfonyl)benzamide with a propargyl hexaethylene glycol carbamate gave an acetylene which was reduced to the corresponding alkyl 3-pyridylphenylsulfonylbenzamide. This reagent retained the VHL-dependent selectivity of the parent analogues and was successfully utilized as an affinity reagent.

Related Organizations
Keywords

Models, Molecular, Dose-Response Relationship, Drug, Molecular Structure, Pyridines, Antineoplastic Agents, Chromatography, Affinity, Kidney Neoplasms, Structure-Activity Relationship, Thiazoles, Cell Line, Tumor, Drug Design, Benzamides, Humans, Sulfones, Drug Screening Assays, Antitumor, Carcinoma, Renal Cell, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
bronze