Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2000 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

The Role of Homodimers in Surfactant Protein B Function in Vivo

Authors: D C, Beck; M, Ikegami; C L, Na; S, Zaltash; J, Johansson; J A, Whitsett; T E, Weaver;

The Role of Homodimers in Surfactant Protein B Function in Vivo

Abstract

Surfactant protein B (SP-B) is detected in the airways as a sulfhydryl-dependent dimer (M(r) approximately 16,000). To test the hypothesis that formation of homodimers is critical for SP-B function, the cysteine residue reported to be involved in SP-B dimerization was mutated to serine (Cys(248) --> Ser) and the mutated protein was targeted to the distal respiratory epithelium of transgenic mice. Transgenic lines which demonstrated appropriate processing, sorting, and secretion of human SP-B monomer were crossed with SP-B +/- mice to achieve expression of human monomer in the absence of endogenous SP-B dimer (hSP-B(mon), mSP-B-/-). In two of three transgenic lines, hSP-B(mon), mSP-B-/- mice had normal lung structure, complete processing of SP-C proprotein, well formed lamellar bodies, and normal longevity. Pulmonary function studies revealed an altered hysteresis curve for hSP-B(mon), mSP-B-/- mice relative to wild type mice. Large aggregate surfactant fractions from hSP-B(mon), mSP-B-/- mice resulted in higher minimum surface tension in vitro compared with surfactant from wild type mice. Surfactant lipids supplemented with 2% hSP-B monomer resulted in slower adsorption and higher surface tension than surfactant with 2% hSP-B dimer. Taken together, these data indicate a role for SP-B dimer in surface tension reduction in the alveolus.

Keywords

Mice, Structure-Activity Relationship, Pulmonary Surfactant-Associated Proteins, Mutation, Animals, Humans, Mice, Transgenic, Pulmonary Surfactants, Apoproteins, Dimerization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Top 10%
Top 10%
Top 10%
gold