Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2004 . Peer-reviewed
Data sources: Crossref
Development
Article . 2004
versions View all 2 versions

FGF acts directly on the somitic tendon progenitors through the Ets transcription factorsPea3andErmto regulate scleraxis expression

Authors: Ava E. Brent; Clifford J. Tabin;

FGF acts directly on the somitic tendon progenitors through the Ets transcription factorsPea3andErmto regulate scleraxis expression

Abstract

During somite development, a fibroblast growth factor (FGF) signal secreted from the myotome induces formation of a scleraxis (Scx)-expressing tendon progenitor population in the sclerotome, at the juncture between the future lineages of muscle and cartilage. While overexpression studies show that the entire sclerotome is competent to express Scx in response to FGF signaling, the normal Scx expression domain includes only the anterior and posterior dorsal sclerotome. To understand the molecular basis for this restriction, we examined the expression of a set of genes involved in FGF signaling and found that several members of the Fgf8synexpression group are co-expressed with Scx in the dorsal sclerotome. Of particular interest were the Ets transcription factors Pea3 and Erm, which function as transcriptional effectors of FGF signaling. We show here that transcriptional activation by Pea3and Erm in response to FGF signaling is both necessary and sufficient for Scx expression in the somite, and propose that the domain of the somitic tendon progenitors is regulated both by the restricted expression of Pea3 and Erm, and by the precise spatial relationship between these Ets transcription factors and the FGF signal originating in the myotome.

Related Organizations
Keywords

Gene Expression Regulation, Developmental, Chick Embryo, Avian Proteins, DNA-Binding Proteins, Fibroblast Growth Factors, Tendons, Somites, Basic Helix-Loop-Helix Transcription Factors, Animals, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    189
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
189
Top 10%
Top 10%
Top 10%
bronze