Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 2003 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
Nature
Article . 2003
versions View all 2 versions

Opposite thermosensor in fruitfly and mouse

Authors: Veena, Viswanath; Gina M, Story; Andrea M, Peier; Matt J, Petrus; Van M, Lee; Sun Wook, Hwang; Ardem, Patapoutian; +1 Authors
Abstract

Several members of the TRP (for transient receptor potential) family of ion channels act as physiological temperature sensors in mammals1,2,3,4,5,6, but it is not known whether the invertebrate TRP subfamilies that are found in the fruitfly Drosophila and the roundworm Caenorhabditis elegans can be directly activated by temperature. Here we show that the Drosophila orthologue of ANKTM1, which is a cold-activated ion channel in mammals, responds to a warming rather than a cooling stimulus. The thermosensing function of these channels is therefore evolutionarily conserved, and they show a surprising flexibility in their response to different temperature ranges.

Keywords

Molecular Sequence Data, Temperature, Ion Channels, Protein Structure, Tertiary, Mice, Drosophila melanogaster, Transient Receptor Potential Channels, Animals, Drosophila Proteins, Caenorhabditis elegans Proteins, TRPA1 Cation Channel, Body Temperature Regulation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    251
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
251
Top 1%
Top 1%
Top 1%