Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2002 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Selective Inhibition of Dipeptidyl Peptidase I, Not Caspases, Prevents the Partial Processing of Procaspase-3 in CD3-activated Human CD8+ T Lymphocytes

Authors: Nicolas, Bidère; Marie, Briet; Antoine, Dürrbach; Céline, Dumont; Jérôme, Feldmann; Bernard, Charpentier; Geneviève, de Saint-Basile; +1 Authors

Selective Inhibition of Dipeptidyl Peptidase I, Not Caspases, Prevents the Partial Processing of Procaspase-3 in CD3-activated Human CD8+ T Lymphocytes

Abstract

Activation of primary human T cells by anti-CD3 and interleukin-2 resulted in partial processing of procaspase-3 in activated nonapoptotic (Delta Psi(m)high) CD8(+) T cells but not in CD4(+) T cells. Apical caspases-8 and -9 were not activated, and Bid was not processed to truncated Bid. Boc-D.fmk, a broad spectrum caspase inhibitor, did not prevent this process, whereas GF.dmk, a selective inhibitor of dipeptidyl peptidase I, was effective. Dipeptidyl peptidase I is required for the activation of granule-associated serine proteases. It is enriched in the cytolytic granules of cytotoxic lymphocytes, where it promotes the proteolytic activation of progranzymes A and B. Inhibition of granzyme B (GrB)-like serine proteases by Z-AAD.cmk prevented partial processing of procapase-3, whereas inhibition of GrA activity by D-FPR.cmk had no effect. Specific inhibitors of other lysosomal proteases such as cathepsins B, L, and D did not interfere in this event. Patients with Chediak-Higashi syndrome or with perforin deficiency also displayed partial processing of procaspase-3, excluding the involvement of granule exocytosis for the delivery of the serine protease in cause. The p20/p12 processing pattern of procaspase-3 in our model points to GrB, the sole serine protease with caspase activity. Small amounts of GrB were indeed exported from cytolytic granules to the cytosol of a significant fraction of GrB-positive cells.

Keywords

Enzyme Precursors, CD3 Complex, Caspase 3, CD8-Positive T-Lymphocytes, Cysteine Proteinase Inhibitors, Lymphocyte Activation, Cathepsin C, Amino Acid Chloromethyl Ketones, Protein Subunits, Protein Transport, Antigens, CD, Caspases, Humans, Protease Inhibitors, Protein Processing, Post-Translational

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Average
Top 10%
Top 10%
gold