Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroscience
Article . 2011 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Cyclin B1 Expression Regulated by Cytoplasmic Polyadenylation Element Binding Protein in Astrocytes

Authors: Ki Chan, Kim; Won Jung, Oh; Kwang Ho, Ko; Chan Young, Shin; David G, Wells;

Cyclin B1 Expression Regulated by Cytoplasmic Polyadenylation Element Binding Protein in Astrocytes

Abstract

Astrocytes are the most abundant cells in the brain, playing vital roles in neuronal survival, growth, and function. Understanding the mechanism(s) regulating astrocyte proliferation will have important implications in brain development, response to injury, and tumorigenesis. Cyclin B1 is well known to be a critical regulator of mitotic entry via its interaction with cyclin-dependent kinase 1. In rat astrocytes, we now show that the mRNA binding protein cytoplasmic polyadenylation element binding protein 1 (CPEB1) is associated with cyclin B1 mRNA and that this interaction is enriched at the centrosome. In addition, if growth-arrested astrocytes are stimulated to divide, CPEB1 is phosphorylated and cyclin B1 mRNA is polyadenylated, both hallmarks of CPEB1 activation, resulting in an increase in cyclin B1 protein. CPEB1 binding to mRNA initially inhibits translation; therefore, removing CPEB1 from mRNA should result in an increase in translation due to derepression. Indeed, when we either knocked down CPEB1 protein with siRNA or sequestered it from endogenous mRNA by expressing RNA containing multiple CPEB1 binding sites, cyclin B1 protein was increased and cell proliferation was stimulated. Our data suggest a mechanism wherein CPEB1 is bound and represses cyclin B1 mRNA translation until a signal to proliferate phosphorylates CPEB1, resulting in an increase in cyclin B1 protein and progression into mitosis. Our results demonstrate for the first time a role for CPEB1 in regulating cell proliferation in the brain.

Related Organizations
Keywords

Centrosome, Male, Cytoplasm, RNA Stability, RNA-Binding Proteins, Polyadenylation, Rats, Rats, Sprague-Dawley, Animals, Newborn, Gene Expression Regulation, Astrocytes, Animals, Female, Cyclin B1, Cells, Cultured, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
hybrid