Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2002 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Interaction of Two Actin-binding Proteins, Synaptopodin and α-Actinin-4, with the Tight Junction Protein MAGI-1

Authors: Kevin M, Patrie; Andrew J, Drescher; Ajith, Welihinda; Peter, Mundel; Ben, Margolis;

Interaction of Two Actin-binding Proteins, Synaptopodin and α-Actinin-4, with the Tight Junction Protein MAGI-1

Abstract

In an attempt to find podocyte-expressed proteins that may interact with the tight junction protein MAGI-1, we screened a glomerulus-enriched cDNA library with a probe consisting of both WW domains of MAGI-1. One of the isolated clones contained two WW domain-binding motifs and was identified as a portion of the actin-bundling protein synaptopodin. In vitro binding assays confirmed this interaction between MAGI-1 and synaptopodin and identified the second WW domain of MAGI-1 to be responsible for the interaction. MAGI-1 and synaptopodin can also interact in vivo, as they can be immunoprecipitated together from HEK293 cell lysates. Another actin-bundling protein that is found in glomerular podocytes and shown to be mutated in an inheritable form of glomerulosclerosis is alpha-actinin-4. We show that alpha-actinin-4 is also capable of binding to MAGI-1 in in vitro binding assays and that this interaction is mediated by the fifth PDZ domain of MAGI-1 binding to the C terminus of alpha-actinin-4. Exogenously expressed synaptopodin and alpha-actinin-4 were found to colocalize along with endogenous MAGI-1 at the tight junction of Madin-Darby canine kidney cells. The interaction and colocalization of MAGI-1 with two actin-bundling proteins suggest that MAGI-1 may play a role in actin cytoskeleton dynamics within polarized epithelial cells.

Keywords

Base Sequence, Microfilament Proteins, Fluorescent Antibody Technique, Cell Line, Dogs, Animals, Humans, Actinin, Nucleoside-Phosphate Kinase, Guanylate Kinases, DNA Primers, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    127
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
127
Top 10%
Top 10%
Top 10%
gold