Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroscience
Article . 2012 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Functional Analysis of VPS41-Mediated Neuroprotection inCaenorhabditis elegansand Mammalian Models of Parkinson's Disease

Authors: Adam J, Harrington; Talene A, Yacoubian; Sunny R, Slone; Kim A, Caldwell; Guy A, Caldwell;

Functional Analysis of VPS41-Mediated Neuroprotection inCaenorhabditis elegansand Mammalian Models of Parkinson's Disease

Abstract

Disruption of the lysosomal system has emerged as a key cellular pathway in the neurotoxicity of α-synuclein (α-syn) and the progression of Parkinson's disease (PD). A large-scale RNA interference (RNAi) screen usingCaenorhabditis elegansidentified VPS-41, a multidomain protein involved in lysosomal protein trafficking, as a modifier of α-syn accumulation and dopaminergic neuron degeneration (Hamamichi et al., 2008). Previous studies have shown a conserved neuroprotective function of human VPS41 (hVPS41) against PD-relevant toxins in mammalian cells andC. elegansneurons (Ruan et al., 2010). Here, we report that both the AP-3 (heterotetrameric adaptor protein complex) interaction domain and clathrin heavy-chain repeat domain are required for protectingC. elegansdopaminergic neurons from α-syn-induced neurodegeneration, as well as to prevent α-syn inclusion formation in an H4 human neuroglioma cell model. Using mutantC. elegansand neuron-specific RNAi, we revealed that hVPS41 requires both a functional AP-3 (heterotetrameric adaptor protein complex) and HOPS (homotypic fusion and vacuole protein sorting)-tethering complex to elicit neuroprotection. Interestingly, two nonsynonymous single-nucleotide polymorphisms found within the AP-3 interacting domain of hVPS41 attenuated the neuroprotective property, suggestive of putative susceptibility factors for PD. Furthermore, we observed a decrease in α-syn protein level when hVPS41 was overexpressed in human neuroglioma cells. Thus, the neuroprotective capacity of hVPS41 may be a consequence of enhanced clearance of misfolded and aggregated proteins, including toxic α-syn species. These data reveal the importance of lysosomal trafficking in maintaining cellular homeostasis in the presence of enhanced α-syn expression and toxicity. Our results support hVPS41 as a potential novel therapeutic target for the treatment of synucleinopathies like PD.

Keywords

Vesicular Transport Proteins, Parkinson Disease, Animals, Genetically Modified, DNA-Binding Proteins, Disease Models, Animal, Gene Knockout Techniques, Neuroprotective Agents, Cell Line, Tumor, alpha-Synuclein, Animals, Humans, Genetic Predisposition to Disease, Protein Multimerization, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    70
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
70
Top 10%
Top 10%
Top 10%
hybrid