Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Neuroscie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Neuroscience
Article . 2011 . Peer-reviewed
License: CC BY NC SA
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Role of Guanylyl Cyclase Modulation in Mouse Cone Phototransduction

Authors: Sakurai, Keisuke; Chen, Jeannie; Kefalov, Vladimir J;

Role of Guanylyl Cyclase Modulation in Mouse Cone Phototransduction

Abstract

A negative phototransduction feedback in rods and cones is critical for the timely termination of their light responses and for extending their function to a wide range of light intensities. The calcium feedback mechanisms that modulate phototransduction in rods have been studied extensively. However, the corresponding modulation mechanisms that enable cones to terminate rapidly their light responses and to adapt in bright light, properties critical for our daytime vision, are still not understood. In cones, calcium feedback to guanylyl cyclase is potentially a key step in phototransduction modulation. The guanylyl cyclase activity is modulated by the calcium-binding guanylyl cyclase activating proteins (GCAP1 and GCAP2). Here, we used single-cell and transretinal recordings from mouse to determine how GCAPs modulate dark-adapted responses as well as light adaptation in mammalian cones. Deletion of GCAPs increased threefold the amplitude and dramatically prolonged the light responses in dark-adapted mouse cones. It also reduced the operating range of mouse cones in background illumination and severely impaired their light adaptation. Thus, GCAPs exert powerful modulation on the mammalian cone phototransduction cascade and play an important role in setting the functional properties of cones in darkness and during light adaptation. Surprisingly, despite their better adaptation capacity and wider calcium dynamic range, mammalian cones were modulated by GCAPs to a lesser extent than mammalian rods. We conclude that a disparity in the strength of GCAP modulation cannot explain the differences in the dark-adapted properties or in the operating ranges of mammalian rods and cones.

Keywords

Male, Mice, Knockout, 571, Vision, Adaptation, Ocular, Knockout, Action Potentials, In Vitro Techniques, Guanylate Cyclase-Activating Proteins, Mice, Guanylate Cyclase, Retinal Rod Photoreceptor Cells, Ocular, Electroretinography, Retinal Cone Photoreceptor Cells, Animals, Female, Adaptation, Egtazic Acid, Photic Stimulation, Vision, Ocular

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    74
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
74
Top 10%
Top 10%
Top 10%
hybrid