Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Brain Research
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Divergent patterns of cytosolic TDP-43 and neuronal progranulin expression following axotomy: Implications for TDP-43 in the physiological response to neuronal injury

Authors: Katie, Moisse; Kathryn, Volkening; Cheryl, Leystra-Lantz; Ian, Welch; Tracy, Hill; Michael J, Strong;

Divergent patterns of cytosolic TDP-43 and neuronal progranulin expression following axotomy: Implications for TDP-43 in the physiological response to neuronal injury

Abstract

We have performed sciatic axotomies in adult C57BL/6 mice and observed TDP-43 and progranulin (PGRN) expression patterns over 28 days. TDP-43 expression was markedly upregulated in axotomized motor neurons, with prominent cytosolic immunoreactivity becoming maximal by post-injury day 7 and returning to baseline levels by post-injury day 28. Increased TDP-43 expression was confirmed by western blot. TDP-43 mRNA expression was also increased. This was inversely correlated with neuronal PGRN expression which was clearly reduced by day 7 with a return to baseline by post-injury day 28. In contrast, microglial PGRN expression was dramatically increased, and correlated with the inflammatory response to axotomy. Cytosolic TDP-43 colocalized with Staufen and TIA-1, markers for RNA transport and stress granules respectively. We did not observe colocalization of TDP-43 or PGRN with degradative granules (P-bodies) or activated caspase 3. These results indicate that TDP-43 expression is altered in response to neuronal injury and that normal expression is restored following recovery. These findings suggest that the upregulation of TDP-43 expression with prominent cytosolic localization in motor neurons injured by degenerative processes such as ALS may actually represent an appropriate response to neuronal injury.

Keywords

Motor Neurons, Analysis of Variance, Microscopy, Confocal, Caspase 3, RNA-Binding Proteins, Axotomy, Immunohistochemistry, Sciatic Nerve, DNA-Binding Proteins, Mice, Inbred C57BL, Mice, Cytosol, Progranulins, Spinal Cord, Animals, Intercellular Signaling Peptides and Proteins, Female, Microglia, RNA, Messenger, Granulins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    201
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
201
Top 1%
Top 10%
Top 1%