Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Neuroscien...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Trends in Neurosciences
Article . 1991 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

The molecular genetics of invertebrate phototransduction

Authors: R, Ranganathan; W A, Harris; C S, Zuker;

The molecular genetics of invertebrate phototransduction

Abstract

Phototransduction, the primary event in the processing of visual stimuli, is the conversion of light energy into a change in the ionic permeabilities of the photoreceptor cell membrane. In both vertebrates and invertebrates, this process is carried out through a specialized form of a G-protein-coupled receptor cascade. The mechanisms that mediate visual excitation in the vertebrate photoreceptor have been physiologically and biochemically well characterized, and many aspects of this system have served as prototypes for other transduction cascades. However, there are still many unresolved issues in vertebrate phototransduction. The study of phototransduction in Drosophila offers a unique opportunity to make use of powerful molecular genetic techniques to identify novel transduction molecules, and then to examine the function of these molecules in vivo, in their normal cellular environment. The results of a combination of molecular, genetic, physiological and biochemical studies are beginning to produce a clearer model for the complex mechanisms involved in invertebrate visual transduction.

Keywords

Rhodopsin, Light, Animals, Drosophila, Photoreceptor Cells, Invertebrates, Models, Biological, Vision, Ocular

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Average
Top 10%
Top 10%
Related to Research communities