Redox Dependent Modifications of Ryanodine Receptor: Basic Mechanisms and Implications in Heart Diseases
Redox Dependent Modifications of Ryanodine Receptor: Basic Mechanisms and Implications in Heart Diseases
Heart contraction vitally depends on tightly controlled intracellular Ca regulation. Because contraction is mainly driven by Ca released from the sarcoplasmic reticulum (SR), this organelle plays a particularly important role in Ca regulation. The type two ryanodine receptor (RyR2) is the major SR Ca release channel in ventricular myocytes. Several cardiac pathologies, including myocardial infarction and heart failure, are associated with increased RyR2 activity and diastolic SR Ca leak. It has been suggested that the increased RyR2 activity plays an important role in arrhythmias and contractile dysfunction. Several studies have linked increased SR Ca leak during myocardial infarction and heart failure to the activation of RyR2 in response to oxidative stress. This activation might include direct oxidation of RyR2 as well as indirect activation via phosphorylation or altered interactions with regulatory proteins. Out of ninety cysteine residues per RyR2 subunit, twenty one were reported to be in reduced state that could be potential targets for redox modifications that include S-nitrosylation, S-glutathionylation, and disulfide cross-linking. Despite its clinical significance, molecular mechanisms of RyR dysfunction during oxidative stress are not fully understood. Herein we review the most recent insights into redox-dependent modulation of RyR2 during oxidative stress and heart diseases.
- Loyola University Chicago United States
Ca signaling, Physiology, ryanodine receptor, oxidative stress, QP1-981, heart, sarcoplasmic reticulum
Ca signaling, Physiology, ryanodine receptor, oxidative stress, QP1-981, heart, sarcoplasmic reticulum
8 Research products, page 1 of 1
- 2003IsRelatedTo
- 2020IsRelatedTo
- 2013IsRelatedTo
- 2007IsRelatedTo
- 2006IsRelatedTo
- 2013IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).74 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
