Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Water Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Water Research
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Water Research
Article . 2004
versions View all 2 versions

Toxicity of anionic detergents determined by Saccharomyces cerevisiae microarray analysis

Authors: Sophon, Sirisattha; Yuko, Momose; Emiko, Kitagawa; Hitoshi, Iwahashi;

Toxicity of anionic detergents determined by Saccharomyces cerevisiae microarray analysis

Abstract

Sodium n-dodecyl benzene sulfonate (LAS) and sodium dodecyl sulfate (SDS) are popular anionic detergents (surfactants) that are used worldwide and the toxicities of these chemicals have been characterized. We applied these chemicals in a DNA microarray bioassay and determined that the microarray data reflects previous findings and also provides some new information about anionic detergent toxicity. The mRNA expression profiles suggest that LAS and SDS cause damage to membranes and alterations in carbon metabolism, and induce the oxidative stress response. We also found that LAS and SDS induce the pleiotropic drug-resistance network, and that LAS and SDS may be pumped out of yeast cells by this network. Hierarchical clustering of the expression profiles showed that LAS and SDS cause similar features of toxicity and that the toxicity is similar to that of capsaicin but different from that of cadmium and mercury.

Keywords

Surface-Active Agents, Gene Expression Profiling, Benzenesulfonates, Sodium Dodecyl Sulfate, Biological Assay, RNA, Messenger, Saccharomyces cerevisiae, Water Pollutants, Chemical, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    109
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
109
Top 10%
Top 10%
Top 10%