Powered by OpenAIRE graph

CCK-8 INHIBITS LPS-INDUCED IL-1?? PRODUCTION IN PULMONARY INTERSTITIAL MACROPHAGES BY MODULATING PKA, P38, AND NF-??B PATHWAY

Authors: Shujin, Li; Zhiyu, Ni; Bin, Cong; Weijuan, Gao; Shunjiang, Xu; Chunyan, Wang; Yuxia, Yao; +2 Authors

CCK-8 INHIBITS LPS-INDUCED IL-1?? PRODUCTION IN PULMONARY INTERSTITIAL MACROPHAGES BY MODULATING PKA, P38, AND NF-??B PATHWAY

Abstract

The neuropeptide cholecystokinin octapeptide (CCK-8) inhibits inflammation by downregulating the expression of proinflammatory cytokines, such as tumor necrosis factor alpha and interleukin (IL) 1beta during endotoxin shock. However, the signaling mechanism of CCK-8 action has not yet been clearly elucidated. In this study, we have examined the possible signaling pathways by which CCK-8 inhibits lipopolysaccharide (LPS)-induced IL-1beta production in rat pulmonary interstitial macrophages. In macrophages, LPS is known to activate p38 kinase, which, in turn, activates nuclear factor (NF)-kappaB to induce IL-1beta production. We found that the pretreatment of cells with CCK-8 blocked the LPS-induced p38 kinase, NF-kappaB activation, and IL-1beta production. Furthermore, CCK-8 treatment activated the cyclic adenosine monophosphate-protein kinase A signaling pathway and H-89 (a protein kinase A inhibitor), abrogated the inhibitory effects of CCK-8 on p38 kinase activation and NF-kappaB activation. In addition, we also demonstrate that the specific antagonist to CCK-1 receptor (CCK-1R) and CCK-2 receptor (CCK-2R) abrogate the CCK action, and that the effects of the antagonist specific to CCK-1R is more significant. These results suggest that these responses were mediated through CCK-1R and CCK-2R, and CCK-1R might be the major receptor responsible for the anti-inflammatory effect of CCK-8. Taken together, our results indicate that the stimulation of cyclic adenosine monophosphate-protein kinase A signaling pathway by CCK-8 through CCK-1R and CCK-2R inhibits the LPS-induced activation of p38 kinase and NF-kappaB to block the IL-1beta production in rat pulmonary interstitial macrophages.

Related Organizations
Keywords

Lipopolysaccharides, Macrophages, Interleukin-1beta, NF-kappa B, Cyclic AMP-Dependent Protein Kinases, p38 Mitogen-Activated Protein Kinases, Receptor, Cholecystokinin B, Sincalide, Rats, Receptor, Cholecystokinin A, Rats, Sprague-Dawley, Mice, Animals, Female, Cholecystokinin, Lung

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    63
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
63
Top 10%
Top 10%
Top 10%