Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Molecular Sciences
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

The ULK1/2 and AMPK Inhibitor SBI-0206965 Blocks AICAR and Insulin-Stimulated Glucose Transport

Authors: Carlos Henríquez-Olguín; Kaspar W. Persson; Jonas R. Knudsen; Jonas R. Knudsen; Thomas E. Jensen; Agnete B. Madsen; Zhencheng Li;

The ULK1/2 and AMPK Inhibitor SBI-0206965 Blocks AICAR and Insulin-Stimulated Glucose Transport

Abstract

The small molecule kinase inhibitor SBI-0206965 was originally described as a specific inhibitor of ULK1/2. More recently, it was reported to effectively inhibit AMPK and several studies now report its use as an AMPK inhibitor. Currently, we investigated the specificity of SBI-0206965 in incubated mouse skeletal muscle, measuring the effect on analog 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)-stimulated AMPK-dependent glucose transport and insulin-stimulated AMPK-independent glucose uptake. Pre-treatment with 10 µM SBI-0206965 for 50 min potently suppressed AICAR-stimulated glucose transport in both the extensor digitorum longus (EDL) and soleus muscle. This was despite only a modest lowering of AICAR-stimulated AMPK activation measured as ACC2 Ser212, while ULK1/2 Ser555 phosphorylation was prevented. Insulin-stimulated glucose transport was also potently inhibited by SBI-0206965 in soleus. No major changes were observed on insulin-stimulated cell signaling. No general effect of SBI-0206965 on intracellular membrane morphology was observed by transmission electron microscopy. As insulin is known to neither activate AMPK nor require AMPK to stimulate glucose transport, and insulin inhibits ULK1/2 activity, these data strongly suggest that SBI-0206965 has a non-specific off-target inhibitory effect on muscle glucose transport. Thus, SBI-0206965 is not a specific inhibitor of the AMPK/ULK-signaling axis in skeletal muscle, and data generated with this inhibitor must be interpreted with caution.

Keywords

AMPK, Skeletal muscle, SBI-0206965, AMP-Activated Protein Kinases, Mice, Faculty of Science, Animals, Autophagy-Related Protein-1 Homolog, Hypoglycemic Agents, Insulin, /dk/atira/pure/core/keywords/TheFacultyOfScience, Muscle, Skeletal, Kinase inhibitor, Communication, Biological Transport, Ribonucleotides, Aminoimidazole Carboxamide, Mice, Inbred C57BL, Glucose, Pyrimidines, /dk/atira/pure/core/keywords/TheFacultyOfScience; name=Faculty of Science, Benzamides, Female, ULK1/2

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Green
gold