Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Dicing of viral replication intermediates during silencing of latent Drosophila viruses

Authors: Alex, Flynt; Na, Liu; Raquel, Martin; Eric C, Lai;

Dicing of viral replication intermediates during silencing of latent Drosophila viruses

Abstract

Previous studies revealed roles for RNA interference (RNAi) in the immediate cellular response to viral infection in plants, nematodes and flies. However, little is known about how RNAi combats viruses during persistent or latent infections. Our analysis of small RNAs cloned from Drosophila cells latently infected with Flock House Virus (FHV) failed to reveal signatures of bulk degradation of the viral genome. Instead, this + strand virus specifically generated Dicer-2-dependent, 21-nucleotide siRNAs that derived in equal proportion from + and − strands. Curiously, luciferase reporters that are fully complementary to abundant viral siRNAs were poorly repressed. Moreover, although the viral siRNAs that were incorporated into an effector complex associated with Argonaute2, bulk FHV siRNAs in latently infected cells were not loaded into any Argonaute protein. Together, these data suggest that direct dicing of viral replication intermediates plays an important role in maintaining the latent viral state. In addition, the denial of bulk viral siRNAs from effector complexes suggests that criteria beyond the structural competency of RNA duplexes influence the assembly of functional silencing complexes.

Related Organizations
Keywords

Ribonuclease III, Virus Replication, Cell Line, Virus Latency, Argonaute Proteins, Animals, Drosophila Proteins, RNA-Induced Silencing Complex, Drosophila, RNA Interference, RNA, Small Interfering, RNA Helicases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    92
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
92
Top 10%
Top 10%
Top 1%
bronze