Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mechanisms of Develo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article . 1998
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanisms of Development
Article . 1998 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

A mouse homologue of FAST-1 transduces TGFβ superfamily signals and is expressed during early embryogenesis

Authors: Weisberg, Ellen; Winnier, Glenn E.; Chen, Xin; Farnsworth, Charles L.; Hogan, Brigid L.H.; Whitman, Malcolm;

A mouse homologue of FAST-1 transduces TGFβ superfamily signals and is expressed during early embryogenesis

Abstract

The transcription factor FAST-1 has recently been shown to play a key role in the specification of mesoderm by TGF beta superfamily signals in the early Xenopus embryo. We have cloned Fast1, a mouse homologue of Xenopus FAST-1, and characterized its expression during embryogenesis and function in activin/TGF beta signal transduction. In vitro, Fast1 associates with Smads in response to an activin/TGF beta signal to form a complex that recognizes the Xenopus activin responsive element (ARE) targeted by Xenopus FAST-1. In intact cells, introduction of Fast1 confers activin/TGF beta regulation of an ARE-luciferase reporter. In embryos, Fast1 is expressed predominantly throughout the epiblast before gastrulation and declines as development progresses. We propose that mouse Fast1, like Xenopus FAST-1, mediates TGF beta superfamily signals specifying developmental fate during early embryogenesis.

Related Organizations
Keywords

Embryology, Sequence Homology, Amino Acid, Transcription, Genetic, Xenopus, Gene Expression Regulation, Developmental, Forkhead Transcription Factors, Smad Proteins, Gastrula, Smad2 Protein, DNA-Binding Proteins, Mice, Transforming Growth Factor beta, Trans-Activators, Animals, Humans, Nerve Growth Factors, Smad3 Protein, Cloning, Molecular, Developmental Biology, Signal Transduction, Smad4 Protein, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    74
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
74
Top 10%
Top 10%
Top 10%
hybrid