<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The Soluble Proteome of the Drosophila Antenna
The Soluble Proteome of the Drosophila Antenna
The olfactory system of Drosophila melanogaster is one of the best characterized chemosensory systems. Identification of proteins contained in the third antennal segment, the main olfactory organ, has previously relied primarily on immunohistochemistry, and although such studies and in situ hybridization studies are informative, they focus generally on one or few gene products at a time, and quantification is difficult. In addition, purification of native proteins from the antenna is challenging because it is small and encased in a hard cuticle. Here, we describe a simple method for the large-scale detection of soluble proteins from the Drosophila antenna by chromatographic separation of tryptic peptides followed by tandem mass spectrometry with femtomole detection sensitivities. Examination of the identities of these proteins indicates that they originate both from the extracellular perilymph and from the cytoplasm of disrupted cells. We identified enzymes involved with intermediary metabolism, proteins associated with regulation of gene expression, nucleic acid metabolism and protein metabolism, proteins associated with microtubular transport, 8 odorant-binding proteins, protective enzymes associated with antibacterial defense and defense against oxidative damage, cuticular proteins, and proteins of unknown function, which represented about one-third of all soluble proteins. The procedure described here opens the way for precise quantification of any target protein in the Drosophila antenna and should be readily applicable to antennae from other insects.
- South Carolina State University United States
- North Carolina Agricultural and Technical State University United States
- North Carolina State University United States
Male, Proteome, Molecular Sequence Data, Articles, Receptors, Odorant, Mass Spectrometry, Smell, Drosophila melanogaster, Animals, Nanotechnology, Female, Trypsin, Amino Acid Sequence
Male, Proteome, Molecular Sequence Data, Articles, Receptors, Odorant, Mass Spectrometry, Smell, Drosophila melanogaster, Animals, Nanotechnology, Female, Trypsin, Amino Acid Sequence
199 Research products, page 1 of 20
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).35 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
